When are radicals of Lie groups lattice-hereditary?
نویسندگان
چکیده
This note aims to clarify what conditions on a connected Lie group G imply that its maximal connected normal solvable subgroup R intersects each lattice of G as a lattice in R.
منابع مشابه
Lattice of full soft Lie algebra
In this paper, we study the relation between the soft sets and soft Lie algebras with the lattice theory. We introduce the concepts of the lattice of soft sets, full soft sets and soft Lie algebras and next, we verify some properties of them. We prove that the lattice of the soft sets on a fixed parameter set is isomorphic to the power set of a ...
متن کاملThe second dual of strongly zero-product preserving maps
The notion of strongly Lie zero-product preserving maps on normed algebras as a generalization of Lie zero-product preserving maps are dened. We give a necessary and sufficient condition from which a linear map between normed algebras to be strongly Lie zero-product preserving. Also some hereditary properties of strongly Lie zero-product preserving maps are presented. Finally the second dual of...
متن کاملLattices in contact Lie groups and 5-dimensional contact solvmanifolds
This paper investigates the geometry of compact contact manifolds that are uniformized by contact Lie groups, i.e., manifolds of the form Γ \ G for some Lie group G with a left invariant contact structure and uniform lattice Γ ⊂ G. We re-examine Alexander’s criteria for existence of lattices on solvable Lie groups and apply them, along with some other well known tools. In particular, we restric...
متن کاملOn Kurosh-amitsur Radicals of Finite Groups
Between 1952 and 1954 Amitsur and Kurosh initiated the general theory of radicals in various contexts. In the case of all groups some interesting results concerning radicals were obtained by Kurosh, Shchukin, Ryabukhin, Gardner and others. In this paper we are going to examine radical theory in the class of all finite groups. This strong restriction gives chance to obtain stronger results, then...
متن کاملRepresentations of Surface Groups and Right-Angled Artin Groups in Higher-Rank
We give very flexible, concrete constructions of discrete and faithful representations of right-angled Artin groups into higher-rank Lie groups. Using the geometry of the associated symmetric spaces and the combinatorics of the groups, we find a general criterion for when discrete and faithful representations exist, and show that the criterion is satisfied in particular cases. There are direct ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015